_________________________

Подписаться на RSS

Популярные теги Все теги

Нюансы нового закона о СОУТ

Специальная оценка условий труда направлена на устранение формализма и внедрение нового подхода, основанного на реальном учёте оказанного вредного воздействия на организм конкретных работников опасных факторов производственного процесса и условий труда. Этот подход должен обеспечить решение двух задач. 

Во-первых, выявить объективность решения о предоставлении компенсации за вредные условия труда. Во-вторых, заинтересовать администрацию в обеспечении безопасных условий трудовой деятельности работников, чтобы избежать дополнительных страховых выплат.

Кроме того, внедрение единой СОУТ позволяет унифицировать процедуру освобождения предприятий от дополнительных выплат в ПФР и предоставление трудящимся установленных законом компенсаций. Вопросы охраны труда на производстве также получают положительный стимул. 

Процедура СОУТ регулируется данным законом и Трудовым кодексом, куда внесены изменения в статью 6, согласно которым федеральные органы имеют право устанавливать нормативы и порядок проведения СОУТ, проводить экспертизу производственных условий и проверку качества СОУТ.

Сопутствующим Законом №421 о внесении изменений в ТК все положения об аттестации рабочих мест изъяты и изменены на процедуру СОУТ. Так, в статью 212 ТК в обязанностях работодателя по охране труда добавлено проведение СОУТ. В 216-ой статье в полномочия госорганов добавлено определение порядка проведения СОУТ. 

Таким образом, СОУТ определена законом, как единая система принятия решения о предоставлении страховых гарантий и компенсаций и установления сумм страховых взносов. Проведение оценки обеспечивается работодателем.

Одновременно сохраняется установленная в 216-й статье ТК госэкспертиза трудовых условий, которая проводится Федеральной инспекцией труда. Экспертиза должна дать оценку качества СОУТ и фактического состояния дел по охране труда, обоснованности проводимых предприятием компенсационных выплат за вредные условия.

 

Источник: www.otd-lab.ru

 

Медицина труда исследует клинические синдромы интоксикаций нервной системы

Нейрооксичным считается всякое вещество, нарушающее нормальное функционирование нервной ткани, вызывающее необратимое повреждение и/или гибель нервных клеток. Синдромы нейроинтоксикации, вызываемые веществами, отрицательно влияющими на нервную систему, входят в десятку основных видов профессиональной патологии в США. Именно нейротоксичность является основной причиной ограничения использования около 40% веществ из признанных вредными Национальным институтом профессиональной безопасности и здоровья (NIOSH).

Нейротоксичным считается всякое вещество, нарушающее нормальное функционирование нервной ткани, вызывающее необратимое повреждение и/или гибель нервных клеток. В зависимости от своих особенностей различные нейротоксичные вещества действуют на определенные структуры нервной ткани. Неполярные вещества, обладающие лучшей жирорастворимостью, легче проникают в нервную ткань, чем высокополярные, жирорастворимость которых меньше. Ответные реакции на воздействие нейротоксичного вещества, защитные реакции нервной системы зависят также от вида и размера пораженных клеток, от задействованных нейротрансмиттерных систем, целостности клеточных мембран и внутриклеточных органелл. 
     
В наибольшей степени уязвимы для нейротоксичных веществ нейроны (функционально основные клетки нервной системы), активность метаболизма которых очень высока, далее по убывающей следуют олигодендроциты, астроциты, микроглия и клетки эндотелия капилляров. Повреждение структуры клеточных мембран нарушает их электровозбудимость и препятствует проведению импульса. Токсичные вещества изменяют состояние белкового компонента мембран, содержание жидкости в них, способность мембран к транспортировке ионов, что приводит к набуханию нейронов и астроцитов, повреждению легко уязвимых клеток, выстилающих капилляры. Разрыв нейротрансмиттерных путей блокирует постсинаптические рецепторы, провоцирует ложные нейротрансмиттерные эффекты и нарушает синтез, накопление, высвобождение, поглощение или ферментную инактивацию естественных нейротрансмитттеров.


Таким образом, клинические проявления действия нейротоксичных веществ определяются рядом различных факторов: физическими характеристиками самого нейротоксичного вещества, его дозой, характером “мишеней” - избирательно подверженных воздействию структур нервной системы, способностью организма метаболизировать и выводить токчичное вещество, способностью поврежденных структур и процессов к восстановлению. В табл. 1 перечислены различные химические вещества и вызываемые ими синдромы поражения нервной системы.      


Таблица 1. Воздействие химических веществ и вызываемые ими нейротоксические синдромы

Нейротоксин  Источники воздействия 
Клинический диагноз 
 
Пораженные структуры * 

МЕТАЛЛЫ
 
Мышьяк 
Пестициды; пигменты; краска для необрастающих покрытий; нанесение гальванического покрытия;
морские продукты; плавильные печи; полупроводники 
 
Острое отравление: энцефалопатия
Хроническое: периферическая невропатия 
Неизвестно (о)
Аксон (х)
Свинец 
Припой; свинцовая дробь; незаконное виски; инсектициды; мастерская по ремонту кузовов автомобилей; производство аккумуляторных батарей; литейные цеха; плавильные печи; краска на свинцовом сурике; свинцовые трубы 
 
Острое отравление: энцефалопатия
Хроническое: энцефалопатия и периферическая невропатия 


Кровеносные сосуды (о)


Аксон (х)
Марганец 
Производство железа и стали; сварочные работы; обработка металлов; удобрения; изготовители пиротехники, спичек; изготовители батарей из сухих
гальванических элементов 
 
Острое отравление: энцефалопатия
Хроническое: паркинсонизм 
Неизвестно (о)
Нейроны базальных ганглиев (х)
Ртуть  Научные приборы; электрооборудование; амальгамы; нанесение гальванического покрытия; фотография; изготовление сукна  Острое отравление: головная боль; тошнота;  тремор
Хроническое: атаксия, периферическая невропатия, энцефалопатия


Неизвестно (о)
Аксон (х)
Неизвестно (х)
 
Олово  Консервная промышленность; припой; электронные компоненты; пластмассы на основе поливинилхлорида; фунгициды  Острое отравление: нарушения памяти; припадки;
дезориентация
Хроническое: энцефаломиелопатия


Нейроны лимбической системы
(о, х)
Миелин (х)
 

РАСТВОРИТЕЛИ
 
Сероуглерод  Изготовители искусственного шелка; консерванты; текстиль; резиновый клей; масляные лаки; нанесение гальванических покрытий  Острое отравление: энцефалопатия
Хроническое: периферическая невропатия, паркинсонизм 


Неизвестно (о)
Аксон (х)
Неизвестно 
 
n-гексан, метилбутилкетон  Краски; политуры; масляные лаки; соединения для очистки металлов; быстро-сохнущие чернила; составы
для удаления краски; клеи, адгезивы 
Острое отравление: наркотическое состояние
Хроническое: периферическая невропатия; 


Неизвестно (о)
Аксон (х)
 
Тетрахлорэтилен  Составы для удаления краски; обезжиривающие вещества; экстрагирующие вещества; химчистка; текстильная промышленность 

Острое отравление: наркотическое состояние
Хроническое: периферическая невропатия, энцефалопатия

 

Неизвестно (о)
Аксон (х)
Неизвестно 
 
Толуол  Растворители каучука; чистящие средства; клеи; производители бензола; бензин; различные виды авиационного топлива; краски; разбавители красок; политуры  Острое отравление: наркотическое состояние
Хроническое: атаксия, энцефалопатия


Неизвестно (о)
Мозжечок (х)
Неизвестно 
 
Трихлорэтилен  Обезжиривающие вещества; малярное дело; масляные лаки; составы для выведения пятен; процесс удаления кофеина; химчистка; растворители каучука  Острое отравление: наркотическое состояние
Хроническое: энцефалопатия, поражение черепномозговых нервов

Неизвестно (о)
Не известно (х)
Аксон (х)
 

ИНСЕКТИЦИДЫ
 
Фосфорорганические соединения  Изготовление и применение в сельскохозяйственном производстве  Острое отравление: холинергическая реакция 
Хроническое: атаксия, паралич, периферическая невропатия 


Ацетилхолинэстераза (о)
Длинные проводящие пути
спинного мозга (х)
Аксон (х)
 
Карбаматы  Изготовление и применение в сельском хозяйстве порошка против блох  Острое отравление:
холинергическая реакция Хроническое: тремор, периферическая невропатия 

Ацетилхолинэстераза (о)
Допаминергическая система (х)
 

* (о) - острое; (х) - хроническое
     
Устанавливая диагноз интоксикации нервной системы и проводя дифференциальный диагноз с болезнями другой этиологии, необходимо знать патогенез неврологических симптомов и клинической симптоматики, наблюдающейся в данном случае, иметь полную информацию о характере воздействия данного вещества на нервную систему, подтверждение факта контакта с ним, лабораторное доказательство наличия нейротоксичного вещества или его метаболитов в организме, четкую схему развития ситуации во времени: контакта с веществом, появления симптомов, их убывания по прекращении контакта. 
     
На том этапе, когда уже имеется клиническая симптоматика, надежных доказательств воздействия токсичной дозы того или иного вещества часто может не быть. В отсутствие системы мониторинга средовых воздействий выявить случаи интоксикации нервной системы можно лишь при постоянной бдительности в отношении возможности такой патологии, настрое на ее обнаружение. Характер симптомов поражения центральной и/или периферической нервной системы помогает клиницисту сосредоточить внимание на определенной группе веществ – тех, которые с наибольшей вероятностью вызывают данную симптоматику. Судороги, слабость, дрожание или подергивания, анорексия (и снижение веса), нарушение равновесия, угнетение нервной системы, загруженность (ступор или бессознательное состояние), нарушения зрения, расстройства сна, атаксия (нарушение координации произвольных движений), утомляемость, расстройства осязания – вот симптомы поражения многими химическими веществами. Различные сочетания симптомов образуют синдромы токсического поражения нервной системы. 

 

СИНДРОМЫ ПСИХИЧЕСКИХ РАССТРОЙСТВ 

 

Спектр расстройств в психической сфере, описываемых как следствие контакта с теми или иными промышленными веществами, широк - острый психоз, депрессия, хроническая апатия. Необходимо дифференцировать нарушения памяти, характерные для таких заболеваний, как болезнь Альцгеймера, церебральный атеросклероз или опухоль мозга, от когнитивных расстройств, вызываемых рядом токсичных веществ - органическими растворителями, металлами, инсектицидами. Преходящие расстройства сознания или эпилептические припадки (с двигательными проявлениями либо без них) как самостоятельные заболевания также необходимо отличать от клинически сходных расстройств сознания нейротоксического происхождения.
 
Такие проявления нейроинтоксикации, как головная боль, головокружение, утомляемость и личностные изменения, сходны с картиной нетяжелой энцефалопатии алкогольного происхождения, но также могут быть признаками отравления угарным и углекислым газом (окись и двуокись углерода), свинцом, цинком, нитратами и смешанными органическими растворителями. Для подтверждения наличия когнитивных нарушений у больных с подозрением на токсическую энцефалопатию необходимо проведение стандартизованных нейропсихологических тестов, а выявленные нарушения необходимо дифференцировать с синдромами деменции другого происхождения.
 
В наборе используемых тестов, с одной стороны, должны быть использованы тесты, обеспечивающие всестороннюю оценку когнитивных функций, сохранность профессиональных и бытовых навыков, а с другой – специфичные тесты, которые уже зарекомендовали себя как информативные в выявлении действия нейротоксичных веществ. Кроме того, в стандартизованные наборы должны быть включены тесты, используемые при обследовании больных с различными вариантами травмы мозга и другими органическими заболеваниями - с тем, чтобы четко отличать эти состояния от нейротоксических поражений. Наконец, должны присутствовать элементы внутреннего контроля тестирования, позволяющие избежать влияния на оценку результатов превходящих факторов - мотиваций, ипохондрии, депрессии, трудностей обучения; форма предъявления теста должна учитывать культурный и образовательный уровень пациентов. 
     
Существует клинический континуум поражений центральной нервной системы токсичными веществами – от легких до очень тяжелых (см. ниже). 
       

  • Органический аффективный синдром (последствие I типа), при котором основная жалоба больного – негрубые эмоциональные расстройства с симптомами, близкими к органическим аффективным расстройствам депрессивного характера. Эти явления проходят  по прекращении воздействия токсичного вещества.
  • Нетяжелая хроническая токсическая энцефалопатия, при которой  заметны нарушения со стороны центральной нервной  системы – не только в эмоциональной сфере.  Имеются расстройства памяти и психомоторных функций, подтверждаемые нейропсихологическим тестированием. Кроме того можно выявить расстройства пространственного зрения и абстрактного мышления;  страдают  бытовые  и профессиональные навыки. 
  • Стойкие личностные либо эмоциональные расстройства (последствие IIа типа)  или расстройство интеллектуальных функций (тип II). 

 
Нетяжелая хроническая токсическая энцефалопатия  может протекать медленно, не слишком явно. У части больных изменения постепенно исчезают по прекращении контакта с вредным веществом, у других же – сохраняются. Если контакт с веществом продолжается, энцефалопатия может перейти в более тяжелую форму. 
 
Тяжелая хроническая токсическая энцефалопатия (последствие III типа) характеризуется деменцией с общим снижением памяти и другими расстройствами в когнитивной сфере. Клинические проявления токсической энцефалопатии не зависят от вида токсичного вещества. Толуол, свинец, мышьяк вызывают  хроническую  энцефалопатию с такой же клинической картиной, что и другие токсичные вещества.  Однако порой связать заболевание с той или иной группой веществ помогают    сопутствующие проявления (например, расстройства зрения при отравлении метиловым спиртом).
     
У лиц, длительно работающих с растворителями, могут иметь место стойкие нарушения со стороны нервной системы. Поскольку в клинической картине преобладают субъективные расстройства (жалобы на головную боль, утомляемость, снижение памяти, отсутствие аппетита, боли в груди без четкой локализации), объективизировать заболевание у отдельных больных непросто. 
     
В эпидемиологическом же исследовании, где сравнивались маляры, контактирующие с растворителями, и не имеющие такого контакта промышленные рабочие, маляры продемонстрировали худшие показатели по тестам, характеризующим интеллектуальные возможности, координацию психических и двигательных функций, память и время реакций. Убедительными оказались различия между лицами, работавшими несколько лет с авиационным топливом, и контрольной группой по тестам на концентрацию внимания и по скорости двигательной реакции на сенсорные стимулы. Нейропсихологические и личностные изменения (снижение зрительной и вербальной памяти, худшее выполнение вербальных тестов при оценке интеллекта) были выявлены также у рабочих, красящих машины.
     
Совсем недавно описан вызывающий дискуссии нейротоксический синдром общей повышенной химической чувствительности. Это состояние, проявляющееся множественным поражением органов и систем, возникает у ряда лиц при контакте (профессиональном или бытовом) с различными токсичными веществами в малых дозах. Основные симптомы – депрессия, утомляемость, раздражительность, снижение концентрации внимания. Эти явления повторно - и предсказуемо – возникают при контакте со многими веществами различных химических и токсикологических групп, причем в гораздо меньших концентрациях, чем те, которые вызывают побочные эффекты у основной массы людей. Сходная картина (легкие эмоциональные расстройства, головная боль, усталость, раздражительность, забывчивость) возникает у ряда лиц в плохо проветриваемом помещении, при наличии в воздухе летучих веществ от синтетических отделочных материалов и ковровых покрытий. По прекращении вредных воздействий все эти явления исчезают. НАРУШЕНИЯ СОЗНАНИЯ, ПРИПАДКИ И КОМА 
Недостаточное снабжение мозга кислородом (например, в результате действия угарного или углекислого газа, метана, веществ, блокирующих тканевое дыхание – таких, как цианистоводородная кислота, или пропитывающих нервную ткань –таких, как некоторые органические растворители) может вызвать нарушения сознания. У работающих с антихолинэстеразными веществами (это, например, фосфоорганические инсектициды) потере сознания могут предшествовать эпилептические припадки. Припадки могут возникать также при свинцовой энцефалопатии, вызывающей отек мозга. Первые симптомы острого отравления органическими фосфатами – вегетативные расстройства: головокружение, головная боль, нечеткость зрения, сужение зрачков (миоз), боли в груди, усиленное отделение секрета бронхов, затем припадки. Эти симптомы поражения парасимпатической системы – результат подавления органическими фосфатами активности холинэстеразы. 
ДВИГАТЕЛЬНЫЕ НАРУШЕНИЯ 

 

У лиц, профессионально контактирующих с марганцем, угарным газом, сероуглеродом и токсичным побочным продуктом мепередина – 1-метил-4-фенил-1,2,3,6-тетрагидропиридином, отмечены такие нарушения, как замедленность движений, повышение мышечного тонуса и постуральные (позные) патологические феномены. Порой картина заболевания сходна с паркинсонизмом. При вторичном паркинсонизме токсического происхождения порой бывают и симптомы других нервных болезней – хореические, атетоидные гиперкинезы. У больных наблюдается типичный тремор вида «скатывания шариков»; случаи эти обычно плохо поддаются лечению препаратами ряда L-ДОПА. Дискинезии (расстройство координированных двигательных актов) – обычный симптом отравления бромометаном: наблюдаются спазматические насильственные движения лица, мышц рта, шеи, конечностей, пальцев. Характерный симптом ртутного отравления - дрожание (тремор). При ингаляции толуола выраженный тремор сочетается с атаксией (утратой координации движений мышц). 
     
Опсоклонус – аномальные движения глаз, подергивания их в разных направлениях. Этот симптом часто встречается при стволовом энцефалите, но может быть и признаком отравления хлордеконом: при тяжелых отравлениях наблюдаются непроизвольные спонтанные подергивания обоих глазных яблок – неритмичные, быстрые, вовнутрь либо в разных направлениях. 
ГОЛОВНАЯ БОЛЬ

 

Жалобы на головную боль, обычные при отравлениях парами различных металлов (например, цинка) и другими испарениями возникают в результате вазодилатации (расширения кровеносных сосудов) либо отека мозга. Головная боль характерна также для отравлений угарным и углекислым газом, для гипоксии (кислородной недостаточности). При так называемом синдроме «дома с болезнями» головную боль вызывает избыток углекислоты в плохо вентилируемом помещении. 

ПЕРЕФЕРИЧЕСКАЯ НЕВРОПАТИЯ
Волокна периферических двигательных нервов начинаются в двигательных нейронах, расположенных в передних рогах спинного мозга. Двигательные аксоны идут на периферию, к иннервируемым ими мышцам. Тела чувствительных клеток находятся в ганглиях задних корешков или задних отделах спинного мозга. Импульсы с периферии воспринимаются дистальными рецепторами и идут к центру, к телам нейронов, откуда по проводящим путям спинного мозга информация передается в ствол мозга и большие полушария. Некоторые чувствительные волокна непосредственно связаны с двигательными волокнами на уровне спинного мозга, обеспечивая рефлекторную деятельность и быструю двигательную реакцию на вредоносные воздействия. Эти сенсомоторные связи существуют на всех уровнях, черепномозговые нервы – эквиваленты периферических, но начинающихся не в спинном мозге, а в стволе. Чувствительные и двигательные волокна объединяются в пучках, называемых периферическими нервами.
     
Токсические воздействия на периферические нервные волокна можно разделить на:

 

  • первично аксональные (вызывающие аксонопатии);
  • разрушающие дистальные сенсомоторные связи;
  • первично поражающие миелиновую оболочку и шванновские клетки.


Клинически аксонопатии раньше всего проявляются в ногах, где аксоны особенно длинны и удалены от тела клетки. Прерывистая демиелинизация происходит в участках между перехватами Ранвье. При достаточно выраженной аксонопатии возникает и вторичная демиелинизация; пока аксоны не разрушены, возможны восстановление шванновских клеток и ремиелинизация. Характерная картина токсической невропатии – дистальная аксонопатия с вторичной сегментарной демиелинизацией. Распад миелина ведет к снижению скорости проведения импульса по нерву. Поражение двигательных и чувствительных волокон вначале проявляется непостоянными ощущениями покалывания и онемения, а по мере прогрессирования заболевания – снижением и извращением чувствительности, слабостью и атрофией мышц. 
     
Признаки периферической невропатии – снижение или отсутствие сухожильных рефлексов и соответствующие топике поражения расстройства чувствительности в ногах. Мышечная слабость больше выражена в дистальных отделах конечностей, по мере прогрессирования ухудшается походка, становится трудно сжать предмет в руке. Хотя больше затронуты дистальные отделы, при тяжелом поражении слабость и атрофии распространяются и на проксимальные мышцы конечностей. Мышцы-разгибатели вовлекаются в процесс раньше сгибателей. Порой даже после прекращения действия токсичного вещества жалобы и объективные признаки поражения нерва в течение нескольких недель продолжают нарастать. 
     
Подтвердить нарушение функций периферических нервов, определить тип и тяжесть невропатии помогает электрофизиологическое исследование. Основные признаки – снижение скоростей проведения и амплитуд чувствительных и двигательных потенциалов действия, удлинение латентного периода. Снижение скоростей проведения по двигательным и чувствительным волокнам, как правило, является следствием демиелинизации. Нормальные скорости проведения при наличии мышечных атрофий свидетельствуют в пользу аксональной невропатии. Исключением являются некоторые случаи аксональной невропатии с прогрессирующим распадом двигательных и чувствительных волокон: максимальные скорости проведения могут снижаться за счет выпадения волокон большого диаметра, проведение по которым особенно быстрое.
 
При аксонопатиях на ранних стадиях восстановления появляются регенерирующие волокна, проведение по которым замедлено, особенно в дистальных участках волокна. При электрофизиологическом исследовании больных с токсическими невропатиями обязательно измерение скоростей проведения по двигательным и чувствительным нервам верхних и нижних конечностей. Особое внимание следует уделить параметрам проведения по сенсорным волокнам икроножного нерва (n.suralis): если в последующем будет проведена биопсия (а именно этот нерв чаще используется для биопсии), важно соотнести морфологические изменения волокон с электрофизиологическими. Сравнительное исследование проведения по дистальным и проксимальным участкам нерва помогает в диагностике дистальной токсической аксонопатии, а также в определении места блокирования проведения при демиелинизации.
     
Очень важно знать патофизиологию конкретной предполагаемой токсической полиневропатии. Например, при невропатии, вызванной n-гексаном или метилбутилкетонами, скорости проведения снижаются, однако в некоторых случаях регистрируются нормальные скорости, если при исследовании стимулируются только самые «быстрые» волокна и регистрируются их показатели. Нейротоксичные гексауглеродные растворители вызывают дегенерацию аксонов, в связи с этим возникают вторичные изменения миелина и в целом скорости проведения снижаются, хотя цифры могут оставаться в пределах нормальных за счет незатронутых проводящих волокон. 
     
Электрофизиологические исследования помимо прямого определения скорости проведения, амплитуд и латентности включают в себя и особые методики. Для оценки чувствительных проводящих систем и некоторых черепномозговых нервов информативно исследование соматосенсорных, слуховых и зрительных вызванных потенциалов. Электрофизиологическое исследование мигательного рефлекса, вовлекающего V (тройничный) и VII (лицевой) черепномозговые нервы, позволяет оценить состояние афферентно-эфферентной цепи; H-рефлекс отражает состояние сегментарных двигательных проводящих путей. Вибрационная стимуляция дает возможность сравнить вовлечение крупных и мелких волокон.

Надежно контролируемые электронные методики могут использоваться для измерения порога получения ответа и далее для определения скорости прохождения ответа, амплитуды мышечного сокращения либо амплитуды и других характеристик сенсорного вызванного потенциала действия. Все электрофизиологические данные должны анализироваться в сопоставлении с клинической картиной и на основе знаний, лежащих в их основе патофизиологических процессов. 
ЗАКЛЮЧЕНИЕ

Отличить нейроинтоксикационный синдром от нервных болезней другого происхождения – серьезнейшая задача для врача, работающего с населением, подверженным профессиональной патологии. Детальный сбор анамнеза, позволяющего сформировать диагностические предположения, адекватное обследование больного (и целых групп больных) – необходимые условия, и залог успеха диагностики.
 
Чрезвычайно важно раннее выявление патологии, вызванной нейротоксичными веществами – бытовыми и особенно профессиональными, поскольку правильный диагноз и своевременное прекращение воздействия вредного вещества на больного позволяет предупредить развитие необратимых неврологических осложнений. Более того: максимальное ранее выявление больных в «популяции риска» может простимулировать меры по изменению окружающих условий и защите тех, кто еще не пострадал. Robert G. Feldman
 

Источник: Энциклопедия по охране и безопасночсти труда МОТ, электронный ресурс: safework.ru


Вредное воздействие лазерного излучения на здоровье работников



Рассмотрим физическую природу лазерного излучения. В научной литературе лазерное излучение рассматривается как вынужденное испускание атомами химического вещества особых порций-квантов электромагнитного излучения. Лазерное излучение вырабатывается соответствующими технологическими установками, которые получили широкое распространение как в производственной сфере, так и в быту. Например, бытовые проигрыватели дисков содержат соответствующие лазерные оптические считывающие системы.
 
Конструктивно лазерные установки, как правило, состоят из встроенных активных (лазерных) сред, содержащих оптический резонатор, соответствующий источник энергии и системы охлаждения. Лазерный луч характеризуется монохроматичностью и малой расходимостью. Данные физические свойства лазерных лучей позволяют добиться эффективного локального термоэффекта за счет высоких энергетических экспозиций. Такие уникальные характеристики определяют целый ряд полезных потребительских свойств лазеров, которые широко используются для промышленной обработки материалов, в практической медицине (хирургия, терапия), косметологии и т.д.
 
Важно отметить особенности оптических свойств современных лазеров, которые получили применение в системах навигации, в локаторах, телекоммуникациях. Инженеры-разработчики подбирают различные вещества для активных сред лазеров. Это необходимо для того, чтобы сформировать излучение нужной длины волны – от ультрафиолетового излучения до длинноволнового инфракрасного излучения.
 
Промышленное применение получили определенные виды лазеров, которые характеризуются определенными длинами волн – 0,33, 0,49, 0,69, 1,06 и 10,5 мкм.
  
Медицину труда, прежде всего, волнует особое биологическое воздействие излучения лазерных установок на здоровье работников. Такое воздействие неоднозначно, характеризуется сложностью воздействия в зависимости от длины волны, энергетических характеристик мощности, импульсной частоты излучения, размера зоны облучения, а также от особенностей анатомического и физиологического строения определенных органов, систем органов и тканей человеческого организма, подвергающихся соответствующей дозе излучения.
 
Физиологи рассматривают широкий спектр абсорбируемых частот органических молекул биологической ткани. Причем существенного значения не имеет характер излучения (монохроматичность, когерентность). Данные характеристики практически не влияют на повреждающий характер лазерного излучения. Это обусловлено явлениям теплопроводности в тканях и присущими глазу мелкими движениями, которые при относительно длительном воздействии излучения нарушают его интерференционную картину. Поэтому можно утверждать, что пропускание и поглощение излучения тканями человеческого организма специфического характера не носит и подчиняется обычным законам, присущим всем иным видам некогерентных излучений.
 
Поглотив определенную дозу лазерного излучения пораженные ткани подвергаются воздействию энергии, которая по своей физической природе видоизменяется, например, в тепловую, механическую, фотохимическую энергию. Такое мощное локальное энергетическое воздействие формирует соответствующие тепловые, фотохимические, ударные процессы и т.д.  Наиболее уязвимым органом человека здесь является глаз. Сетчатка зрительного анализатора подвергается вредному поражающему воздействию лазеров видимого излучения (диапазон длин волн от 0,38 до 0,7 мкм), а также ближнего инфракрасного излучения (диапазон длин волн от 0,75 до 1,4 мкм). 
 




Излучения других диапазонов не оказывая непосредственного вредного воздействия на сетчатку, могут повреждать роговицу, радужную оболочку и хрусталик глаза работника. Здесь важно отметить ряд важных физиологических особенностей зрительного анализатора человека. В частности лазерное излучения достигает сетчатки глаза, а затем попадает в оптическую систему органа зрения. При этом пучок излучения многократно усиливается (до 10 000 раз). Важно понимать, что короткие испускаемые импульсы лазерного излучения значительно по скорости опережают защитные возможности мигательного рефлекса. В тот промежуток времени (до 0,1 с), когда глаз оказывается незащищенным, короткие импульсы лазерного излучения оказывают свое вредное повреждающее действие.   
 
Другими воротами для проникновения вредных лазерных излучений являются кожные покровы человеческого организма. Характер физического действия лазера на кожу определяется, прежде всего, длиной испускаемого излучения и индивидуальными пигментными характеристиками кожных покровов конкретного человека, его особенностями, генетической предрасположенностью. Лазерные излучения видимого спектра в большей части отражаются кожными покровами человека. Ситуация усугубляется, когда на работника воздействуют излучения дальней инфракрасной области. Такие излучения активно поглощаются кожными покровами, которые в значительной мере состоят из воды. В данном случае возникает опасность ожогов кожных покровов.
 
Коварным врагом человеческого организма являются лазерные излучения, характеризующиеся значениями длин волн, уровни которых несколько превышают или соответствуют установленных нормативами предельным значениям. На здоровье человека оказывается незаметное, но неумолимое вредное воздействие. Негативные эффекты  от использования низкоэнергетических излучений, как правило, проявляется не сразу. У работников, в течение длительного времени обслуживающих лазерные установки, со временем выявляются различные неспецифические нарушения состояния здоровья. В перечень таких патологических состояний входят разнообразные по клинической картине неврологические и сердечно-сосудистые заболевания. У таких работников часто развиваются астенические состояния, астеновегетативные и вегетососудистые дистонии.  
 
Поэтому важнейшее значение в профилактике физиологических расстройств состояния здоровья приобрело  эффективное нормирование вредного воздействия лазерного излучения. В настоящее время получили распространение два научно-обоснованных подхода к нормированию лазерных излучений. Предметом рассмотрения первого подхода является изучение местных повреждающих эффектов на тканях и органах человека, подвергнувшихся воздействию излучения. Другой подход основывается на методиках выявления функциональных и морфологических нарушений систем и конкретных органов человеческого организма, на которые непосредственного воздействия излучения не было.


  
 
Критерии гигиенического нормирования биологического действия лазерного воздействия основаны на особой классификации в зависимости от спектра длин волн лазерных излучений. Диапазон действия лазерного излучения разделен на ультрафиолетовую область (длина волны от 0,18 до 0,38 мкм), видимую область (длина волны от 0,38 до 0,75 мкм), ближнюю инфракрасную область (длина волны от 0,75 до 1,4 мкм) и дальнюю инфракрасную область (длина волны от 0,75 до 1,4 мкм).  
 
Величины предельных допустимых уровней излучения соответствуют принципу установления минимальных пороговых повреждениях тканей организма (кожные покровы, зрительный анализатор), которые могут быть определены современными методами обследования. Важнейшими нормируемыми параметрами лазерных излучений являются энергетическая экспозиция Н (Дж х (м/100)) и облученность Е (Вт x (м/100)), а также энергия W (Дж) и мощность Р (Вт).
 
 В практике экспериментальных и клинико-физиологических исследований, медицинских осмотров работников, подвергшихся воздействию различного рода излучений, преобладают описанные выше неспецифические патологические состояния, а местные повреждения встречаются значительно реже.  

Исследователи отмечают наличие у пораженных лазерами видимого спектра сдвиги в функционировании эндокринной и иммунной систем, центральной и периферической нервной системы, белкового, углеводного и липидного обменов. Лазерные излучения с длиной волны 0,514 мкм приводит к изменениям в деятель­ности симпатоадреналовых и гипофиз-надпочечниковых систем человеческого организма.
 
За рубежом наиболее признанными гигиеническими нормативами являются стандарт США ANSI – Z 36 (1972 г.) и стандарт МЭК – публикация 825. В СССР нормирование лазерных излучений было установлено впервые в 1972 году. В 1981 году были введены в действие первые санитарные нормы и прави­ла. Отечественная и западная системы нормирования различаются. От­личительной особенностью российских нормативов  по сравнению с зарубеж­ными является регламентация значений предельно-допустимых уровней лазерного излучения с учетом не только повреждаю­щих эффектов глаз и кожи, но и с учетом функциональных изменений в организме.
 
На практике задача обоснования нормативов значительно усугублена тем, что имеется достаточно широкий диапазон длин волн лазерных излучений. Встречается большое разнообразие физических параметров тех или  иных источников излучений, а также разнообразны соответствующие повреждающие биологические эффекты. Такого рода исследования носят комплексный характер, требуют длительного времени исследования и обобщения статистических данных, являются крайне сложными, трудоемкими и дорогостоящими.
 
В практике физико-биологических исследований природы вредного воздействия лазерного излучения в научной исследовательской практике получило распространение применение различных методик математического моделирования. Применение сложных алгоритмов и статистических моделей значительно ускоряет ход исследований, позволяет в ряде случаев значительно уменьшить объем экспериментальных исследований в лабораториях с использованием подопытных животных. Применение математических моделей в частности позволяет учитывать характер распределения энергии и абсорбционные ха­рактеристики облучаемой ткани.
 
Научные методы широко применяются для разработки новых гигиенических норм и уточнения действующих ранее нормативов. В настоящее время актуализирована и используется последняя редакция  «Санитарных норм и правил устройства и эксплуатации лазеров» СНиП № 5804-91 (далее по тексту – Правила № 5804-91), которые приняты на основании результатов научных исследований и учета основных положений разработанных ранее документов (СНиП 2392-81, стандарт МЭК /пуб­ликация № 825 1984 года с изменениями 1987 года/ – «Радиационная безопасность лазерных изделий, классификация оборудования, требования и руководство для по­требителей»).
 
Правилами № 5804-91 установлены ПДУ лазерного излучения при различных условиях воздействия на человека, классификацию лазеров по степени опасности генерируемого ими излучения, а также требования к устройству и эксплуатации лазеров, к производственным помещениям, размещению оборудования и организации рабочих мест, персоналу, состоянию производственной среды, применению СИЗ и  медицинскому контролю. Кроме того значения ПДУ опасных и вредных производственных факторов на рабочем месте, оборудованном лазерной техникой, регулируются также ГОСТами, СНиПами, СН и иными документами, которые перечислены в Приложении 1 к Правилам № 5804-91. Однако многие из этих документов утратили силу или заменены новыми нормативами.
 
Правилами № 5804-91 установлено четыре класса опасности генерируемого излучения (см. таблицу ниже).

 

КЛАССЫ ОПАСНОСТИ ГЕНЕРИРУЕМОГО ЛАЗЕРАМИ ИЗЛУЧЕНИЯ

 


Класс лазера
 
Опасно Безопасно Примечание
I Для глаз и кожи


 
II
При облучении кожи 
или глаз           
коллимированным
пучком       
При облучении кожи  
или глаз диффузно   
отраженным излучением
III
При облучении кожи 
или глаз           
коллимированным
пучком и облучении 
глаз диффузно      
отраженным         
излучением         
на расстоянии 10 см
от отражающей      
поверхности        

 
При облучении кожи  
диффузно отраженным 
излучением
Класс распространяется 
только на лазеры,
генерирующие     
излучение        
в спектральном   
диапазоне II
IV
При облучении глаз 
или кожи диффузно  
отраженным         
излучением         
на расстоянии 10 см
от отражающей      
поверхности   

 

 
Отнесение той или иной лазерной установки к определенному классу осуществляет предприятие-изготовитель при помощи расчетный метода, основанного на анализе выходных характеристик излучения.
 
Одной из важнейших задач медицины труда в данной области является установление требований к методам, средствам измерения и контролю воздействия лазерных излучений на здоровье работников. Важно заострить внимание на дозиметрии лазерных излучений, которая включает комплекс методов определения значений пар метров лазерного излучения в заданной точке пространства с целью выявления степени опасности и вредности его для организма человека. Расчетная, или теоретическая дозиметрия рассматривает методы расчета параметров лазерного излучения в зоне возможного нахождения операторов и приемы вычисления степени его опасности. В свою очередь экспериментальная дозиметрия рассматривает методы и средства непосредственного измерения параметров лазерного излучения  в заданной точке пространства.
 
Используемые в гигиенической практике средства дозиметрического контроля называются лазерными дозиметрами. Данный вид исследований приобретает особое значение для оценки отраженных и рассеянных излучений. Это особенно актуально в случаях, когда расчетные методы лазерной дозиметрии, основанные на данных выходных характеристик лазерных установок, дают весьма приближенные значения уровней излучений в заданной точке контроля.
 
Зачастую использование расчетных методов диктуется отсутствием возможности проведения измерения параметров лазерного излучения при активном использовании на конкретном предприятии широкой номенклатуры лазерной техники Применение расчетного метода лазерной дозимет­рии позволяет оценить степень опасности излучения в заданной точке про­странства. В расчетах используются реальные паспортные данные лазерных установок. Данный метод, прежде всего, удобен для работ, которые характеризуются редко повторяющимися кратковременными импульсами излучения, когда ограничена возможность измерения максимального значения экспозиции, определения лазерно-опасных зон, классификации лазеров по степени опас­ности генерируемого ими излучения.
 
Методики лазерной дозиметрии основаны на принципе принцип наибольшего рис­ка, в соответствии с которым оценка степени опасности должна проводиться для наихудших с точки зрения биологического воздействия условий облуче­ния. В данном случае измерение уровней лазерного облучения проводят при работе лазера в режиме максимальной мощности.
 
При проведении гигиенической оценки лазерных установок не проводят измерения па­раметров излучения на выходе, а исследуют интенсивность облучения критических орга­нов человека (зрительный анализатор, кожные покровы), которая оказывает влияние на степень биологического действия. Данные измерения проводятся в конкретных зонах, в которых программой лазерной установки определены наличие обслуживающего персонала и уров­ни отраженного или рассеянного лазерного излучения невозможно полностью устранить.
 
Нужные пределы измерений дозиметров определяются предельными значениями установленных нормативов   и техни­ческими возможностями современной фотометрической аппаратуры. В отечественной практике применяются специально разработанные средства дозиметрического контроля лазерных излучений, так называемые лазерные дозиметры, которые отличаются высокой универсаль­ностью, заключающейся в возможности направленного, рассеянного непрерывного, моноимпульсного и импульсно-периодического воздействия излучения лазерных установок.
 
Таким популярным измерительным средством является, например, лазерный дозиметр ИЛД-2М (ИЛД-2). Прибор обеспечивает измерение парамет­ров лазерного излучения в спектральных диапазонах 0,49 – 1,15 и 2 – 11 мкм. Кроме того ИЛД-2М позволяет измерять энергию (W) и энергетическую экспозицию (Н) от моноимпульсного и импульсно-периодического излучения, мощность (Р) и облученность (Е) от непрерывного лазерного излучения. К недостаткам при­бора можно отнести его большие габариты и массу. В производственных исследованиях более широкое распространение получили портативные лазерные дозиметры ЛД-4 и «ЛАДИН», которые позволяют производить измерения отраженного и рассеянного лазерного излучения в спектральном диапазоне 0,2 – 20 мкм.
 
В заключение рассмотрим перечень необходимых мероприятий по профилактике вредного воздействия лазерного излучения на здоровье работников.  На практике эффективными организационно-техническими методами профилактики воздействия лазерного излучения являются выбор, планировка и внутренняя отделка помещений, рациональное размещение лазерных технологических установок и порядка их обслуживания, использование минимального уровня излучения для решения производственных задач, правильное оборудование рабочего места и подбор эффективных СИЗ, а также ограничение времени воздействия излучения на конкретных работников.
 
Важнейшими организационно-техническим методами профилактики также являются назначение и инструктаж лиц, ответственных за организацию и прове­дение работ, ограничение допуска к проведению работ, организация надзора за режимом работ, четкая организация противоаварийных работ и регламентация порядка ведения работ в аварийных условиях, а также применение различных средств информирования персонала и наглядной агитации, проведение инструктажей, тренингов и повышения квалификации персонала.
 
К санитарно-гигиеническим и лечебно-профилактическим методам профилактики вредного воздействия лазерного излучения на здоровье работников относят контроль за уровнями опасных и вредных факторов на рабочих местах, а также регулярное прохождением персоналом предварительных и периодиче­ских медицинских осмотров.
 
Помещения цехов, где эксплуатируются лазеры, долж­ны отвечать требованиям действующих санитарных норм и правил. Важно организовать рабочий процесс так, чтобы лазерные установки были размещены с учетом минимизации уровней лазерного излучения. Средства защиты (индивидуальные и коллективные)  должны обеспечивать предотвращение воздейст­вия или снижение величины излучения до уровня, не превышающего допус­тимый. Применение надежных и эффективных СИЗ способствует повышению безопасности труда, снижают производственный травматизм и профессиональ­ную заболеваемость. К эффективным коллективным средствам защиты относят ограждения, защитные экраны, блокировки,  автоматические затворы и кожухи. В перечень СИЗ от лазерного из­лучения входят защитные очки, щитки и маски. Применение СИЗ должно быть предусмотрено на стадии проектирования и монтажа лазеров (лазерных установок), при организации рабочих мест, при выборе эксплуатационных параметров. Выбор СИЗ производит­ся в зависимости от класса лазера (лазерной установки), интенсивности из­лучения в рабочей зоне, характера выполняемой работы. СИЗ должны применяться только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда коллективные средства не обеспечивают безопасность персонала.
 
 Игорь Волошин,
научный сотрудник Клинского института охраны и условий труда,
обозреватель информационного портала "Труд-Эксперт. Управление"

Литература: 
1. Измеров Н.Ф., Суворов Г.А. Физические факторы производственной и природной среды. Гигиеническая оценка и контроль. – М.: Медицина, 2003. – 560 с.
2. Пантелеева Е. Правила эксплуатации лазерной техники // Бюджетные учреждения здравоохранения: бухгалтерский учет и налогообложение, № 11, 2009. С. 15-23

.


Источник: Клинский институт охраны и условий труда

Охрана труда при выполнении сварочных работ. Профпатология и выбор СИЗ


В процессе своей трудовой деятельности электросварщик подвергается воздействию целого комплекса опасных и вредных производственных факторов физической и химической природы: излучение, сварочный аэрозоль, искры и брызги металла и шлака и другие. Именно эти факторы вызывают профессиональные заболевания и травматические повреждения. К основным, чаще всего развивающимся профзаболеваниям сварщиков относятся: Интоксикация марганцем (нейротоксикоз), Пневмокониоз, Профессиональная экзема, Пылевой бронхит, Бронхиальная астма. В группу риска возникновения этих заболеваний попадает каждый сварщик со стажем работы более 10 лет, даже если сварщик работает в пределах допустимой концентрации.

 

ПРОФЕССИОНАЛЬНЫЕ ЗАБОЛЕВАНИЯ СВАРЩИКОВ И ИХ ПРОФИЛАКТИКА 
Спектр излучения сварочной дуги включает в себя участок инфракрасных волн, видимый участок и ультрафиолетовый участок. При этом доля инфракрасных лучей составляет от 30 – 70 % всей энергии излучения дуги. Именно инфракрасные лучи способны вызвать профессиональную катаракту. Наибольшее значение имеет ультрафиолетовая часть спектра увеличивающая риск возникновения онкологических заболеваний. Даже кратковременное воздействие ультрафиолетовых лучей на незащищенный глаз способно вызвать ожог роговой оболочки – электроофтальмию, а воздействуя на открытые участки кожи, вызывает ожоги. Ожоги от сварочной дуги могут быть гораздо сильнее и опаснее, чем от солнца. Чем выше сила тока при сварке, тем сильнее излучение сварочной дуги. Опасность возрастает при сварке ржавой, загрязненной, замасленной или окрашенной поверхности, а также при использовании загрязненного флюса.

Сварочный аэрозоль представляет собой совокупность мельчайших частиц, образовавшихся в результате конденсации паров расплавленного металла, шлака и покрытия электродов. К наиболее вредным выделениям относятся окислы марганца, вызывающие органические заболевания нервной системы, легких, печени и крови; соединения кремния, вызывающие в результате вдыхания их силикоз; соединения хрома, способные накапливаться в организме, вызывая головные боли, заболевания пищеварительных органов, малокровие; окись титана, вызывающая заболевания легких. Кроме того, на организм неблагоприятно воздействуют соединения алюминия, вольфрама, железа, ванадия, цинка, меди, никеля и других элементов.

Вредные газообразные вещества, попадая в организм через дыхательные пути и пищеварительный тракт, вызывают иногда тяжелые поражения всего организма. К наиболее вредным газам, выделяющимся при сварке и резке, относятся окислы азота, вызывающие заболевания легких и органов кровообращения; окись углерода накапливаясь в помещении приводит к раздражению дыхательных путей, вызывает потерю сознания, одышку, судороги и поражение нервной системы; озон образуется при сварке в инертных газах, быстро вызывает раздражение глаз, сухость во рту и боли в груди; фтористый водород действует на дыхательные пути и даже в небольших  концентрациях вызывая раздражение слизистых оболочек. При сварке в среде защитных газов торированными вольфрамовыми электродами в воздух выделяются окислы тория и продукты его распада, которые представляют радиационную опасность.

Другие элементы сварочного аэрозоля, а также так называемые сварочные газы, обладая сильным раздражающим действием, способны вызвать хронический бронхит. Установлено, что многие компоненты сварочного аэрозоля при длительном воздействии увеличивают риск возникновения сердечно-сосудистых и онкологических заболеваний, и уменьшают продолжительность жизни. 

Шум в сочетании с ультразвуковыми  колебаниями вызывает стойкое понижение слуха у работающих.

Чтобы избежать описанного неблагоприятного воздействия производственных факторов, характерных для электросварки, необходимо не допускать облучения сварочной дугой глаз и открытых участков кожи, защищать их от попадания искр и брызг металла и шлака и, наконец, препятствовать попаданию в органы дыхания сварочного аэрозоля. При всех способах дуговой, электрошлаковой, контактной и газовой сварки, плазменных технологиях это легче всего сделать с помощью средств индивидуальной защиты – сварочных щитков с блоком фильтрации и подачи воздуха в совокупности с правильно подобранной специальной защитной одеждой, устойчивой к излучению дуги, огнестойкой и прочной, а также с перчатками или рукавицами, обладающими необходимыми защитными свойствами, что позволяет гарантировать полную защиту электросварщика от описанных выше опасных и вредных производственных факторов. Практика показывает, что вентиляция в совокупности с комплексом мероприятий технологического и организационного характера позволяет снизить концентрации вредных веществ до предельно допустимых и способствует значительному оздоровлению условий труда работающих в сварочных цехах.

 

Грамотный подбор и применение комплексных средств индивидуальной защиты позволит свести к минимуму риск профессиональных заболеваний и сохранить здоровье сварщика. 
К основным способам профилактики профзаболеваний электросварщиков относятся: Совершенствование технологических процессов, Регулярное использование индивидуальных средств защиты, Наличие, исправность и регулярное использование коллективных средств защиты, Качественное проведение предварительных и периодических медицинских осмотров, Оздоровление в профилакториях и пансионатах, Защита временем (исключение чрезмерно длительного стаже работы  со сварочными аэрозолями и пылью и исключение сверхурочных работ). Рекомендуемый максимальный стаж для электросварщиков – 12,5 лет, Наличие и регулярное использование дополнительных к обеденному оплачиваемых перерывов для посещения ингалятория, Регулярное использование дополнительного питания, Отказ от курения.

Источник: rospotrebnadzor.ru.

ВРЕДНОЕ ВОЗДЕЙСТВИЕ НА РАБОТНИКА УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ

 

К ультрафиолетовой части спектра относятся волны длиной от 100 до 400 нм. В производственных условиях встречается при электросварке, действии ртутно-кварцевых ламп, плавке металла в электропечах, используется в кино- и фотопромышленности, при светокопировальных и плазменных процессах. Ультрафиолетовое излучение применяется для предупреждения D-витаминной недостаточности у рабочих на подземных выработках, а также в физиотерапевтических кабинетах. При этом воздействию излучения подвергаются и медработники, обслуживающие кабинеты.

Основными искусственными источниками ультрафиолетового излучения являются ртутные лампы высокого и среднего давления, ксеноновые дуговые лампы, а также лампы, содержащие смеси различных газов, в состав которых входят ксенон или пары ртути. Биологическая активность ультрафиолетовые лучей зависит от длины их волн.
Различают 3 участка спектра с длиной волны:

 

  • 0,4 – 0,31 мкм – оказывающие слабое биологическое действие;
  • 0,31 – 0,28 мкм – оказывающие сильное действие на кожный покров;
  • 0,28 – 0,20 мкм – активно действующие на тканевые белки и липоиды, способные вызывать гемолиз.


Биологические объекты способны поглощать энергию падающего на них излучения. При этом световой фотон, взаимодействуя с молекулой, выбивает электрон из ее орбиты. В результате образуется положительно заряженная молекула, или малый ион, действующий как свободный радикал, нарушающий структуру белков и повреждающий клеточные мембраны. Так как энергия фотона обратно пропорциональна длине волны, коротковолновое ультрафиолетовое излучение обладает большей повреждающей способностью по отношению к биологическим объектам.

Повреждение живых объектов ультрафиолетовым излучением всегда фотохимическое, оно не сопровождается заметным повышением температуры и может возникнуть после длительного латентного периода. Для повреждения достаточно малых доз излучения, действующих в течение длительного времени.

 

Интенсивное воздействие ультрафиолетового излучения может вызвать профессиональные дерматиты с диффузной эритемой и экссудацией, поражение слизистой и роговой оболочек глаза (электроофтальмию).
Патогенез. Ультрафиолетовые лучи, попадая в передние отделы глаза, вызывают там воспалительные явления. Под действием ультрафиолетового излучения в первую очередь страдает передний эпителий роговицы.

Под действием больших доз излучения развивается воспалительная реакция с вовлечением в процесс радужки и окружающих тканей. Нарушается баланс внутриглазной жидкости, причиной которого является повышение проницаемости поврежденного эндотелия. Возникает острый фотокератит.

Изменения роговицы вследствие длительного воздействия малых доз ультрафиолетового излучения сходны с возрастными изменениями. И в том и в другом случае уменьшается толщина роговицы, снижается плотность эндотелиальных клеток.

Под действием ультрафиолетового излучения снижается чувствительность роговицы, но после прекращения облучения чувствительность быстро восстанавливается. Предполагается, что при этом угнетается деятельность нервного сплетения роговицы без изменения его структуры. Процесс выздоровления тормозится миграцией лейкоцитов в роговичную ткань. Сильная боль при фотокератите вызвана не только потерей эпителиальных клеток, но и повреждением аксонов субэпителиального нервного сплетения.

Для появления симптомов фотокератита достаточно весьма небольших доз ультрафиолетового излучения.

После нескольких облучений глаз становится еще более чувствительным к повреждающему действию ультрафиолетового излучения. При многократных облучениях степень повреждения роговицы зависит от длительности промежутка времени от одного облучения до другого. Роговичная ткань способна в некоторой степени восстанавливаться. Для этого необходимо, чтобы от одного облучения до другого прошло не менее 8 ч.

Клиническая картина. Симптомы болезни обычно появляются через 6—12 ч после облучения. Больных беспокоят покраснение век и кожи вокруг глаз, ощущение инородного тела в глазу, светобоязнь, слезотечение и сильная боль в пострадавшем глазу. Острая стадия заболевания продолжается 24 ч, но полностью дискомфортные ощущения исчезают только через 48 ч. Объективно обнаруживаются резкий блефароспазм, гиперемия конъюнктивы век и глазного яблока.

В редких случаях наблюдается отек конъюнктивы. При обычном осмотре изменений в роговице, как правило, не отмечается. В свете щелевидной лампы роговица кажется как бы истыканной, реже виден приподнятый эпителий. Как правило, эти изменения носят обратимый характер. Необратимые нарушения возникают только при воздействии достаточно больших доз ультрафиолетового излучения.

Лечение. Для снятия болезненных ощущений необходимо закапывание в глаза раствора дикаина или новокаина. Полезны холодные примочки. Больной должен оставаться под врачебным наблюдением в течение 1 – 3 ч. Через несколько часов все явления обычно проходят. Иногда более длительно остается светобоязнь. В этих случаях рекомендуется ношение солнцезащитных очков в течение нескольких дней. Трудоспособность нарушается обычно лишь на 1 день.

Профилактика. Люди, работающие с искусственными источниками ультрафиолетовых лучей, должны пользоваться защитными очками, линзы которых поглощают ультрафиолетовое излучение. Необходимо также использовать ручной защитный щит, имеющий одно или два защитных окошка. Важное значение имеет экранирование рабочего места.

Источник: medichelp.ru.

 

ОПАСНЫЕ ПРОИЗВОДСТВЕННЫЕ ФАКТОРЫ ПРИ СВАРКЕ И ВЫБОР СИЗВ процессе своей трудовой деятельности электросварщик подвергается воздействию целого комплекса опасных и вредных производственных факторов физической и химической природы: Излучение электрической, сварочный аэрозоль, искры и брызги расплавленного металла и шлака. 
 
Именно эти факторы вызывают профессиональные заболевания и травматические повреждения. Другие вредности: газы, шум, электромагнитные поля, образование аэроионов имеют меньшее значение и обычно не служат причиной профессиональных заболеваний. 
 
Спектр излучения сварочной дуги включает в себя участок инфракрасных волн (3430 – 760 нм), видимый участок (760 – 400 нм) и ультрафиолетовый участок (400 – 180 нм). При этом доля инфракрасных лучей составляет от 30 до 70% всей энергии излучения дуги. Именно инфракрасные лучи способны вызвать профессиональную катаракту. Видимый свет электрической дуги нестерпимо ярок. Смотреть на него сколько-нибудь долго невозможно, поэтому ни у кого из сварщиков не вызывает сомнения необходимость использования светофильтров. Наибольшее значение с точки зрения охраны труда имеет ультрафиолетовая часть спектра. Даже кратковременное воздействие ультрафиолетовых лучей на незащищенный глаз способно вызвать ожог роговой оболочки – электрофтальмию.

 

Неопытные сварщики чаще других страдают электрофтальмией из-за трудности своевременно устанавливать в нужное положение щиток со светофильтром в момент возбуждения сварочной дуги. Ультрафиолетовое же излучение, воздействуя на открытые участки кожи, вызывает ожоги, подобные тем, которыми страдают люди, злоупотребившие солнечными лучами при загорании. Ожоги от сварочной дуги могут быть, однако, гораздо сильнее и опаснее, чем от солнца. Чем выше сила тока при сварке, тем сильнее излучение сварочной дуги.  
Сварочный аэрозоль представляет собой совокупность мельчайших частиц, образовавшихся в результате конденсации паров расплавленного металла, шлака и покрытия электродов. Состав сварочного аэрозоля зависит от состава сварочных и свариваемых материалов. В силу своих мельчайших размеров (иногда меньше 1 микрометра) сварочный аэрозоль беспрепятственно проникает в глубинные отделы легких (легочные альвеолы) и частично остается в их стенках, вызывая профессиональное заболевание, называемое «пневмокониоз сварщика», частично всасывается в кровь. Если сварочный аэрозоль содержит значительное количество марганца, а так бывает при сварке легированных и нержавеющих сталей качественными электродами, то, распространяясь с кровью по организму, этот чрезвычайно токсичный элемент вызывает тяжелое заболевание: марганцевую интоксикацию. При этом страдает, главным образом, центральная нервная система. Изменения в организме при марганцевой интоксикации необратимы.
 
Другие элементы сварочного аэрозоля, а также так называемые сварочные газы, обладая сильным раздражающим действием, способны вызвать хронический бронхит. 

В последние годы установлено, что многие компоненты сварочного аэрозоля, не вызывая специфических профессиональных болезней, при длительном воздействии увеличивают риск возникновения сердечно-сосудистых и онкологических заболеваний, а также уменьшают продолжительность жизни.
 
Чтобы избежать описанного неблагоприятного воздействия производственных факторов, характерных для электросварки, необходимо не допускать облучения сварочной дугой глаз и открытых участков кожи, защищать их от попадания искр и брызг металла и шлака и, наконец, препятствовать попаданию в органы дыхания сварочного аэрозоля. При всех способах дуговой, электрошлаковой, контактной и газовой сварки, плазменных технологиях это легче всего сделать с помощью комплексного средства индивидуальной защиты – сварочных щитков Speedglas 9000 с блоками Adflo (Hornell Int. AB) или Муссон.
 
Комплексное средство принципиально состоит из двух основных частей. Для защиты лица и глаз применяется сварочный щиток с автоматически затемняющимся светофильтром на жидких кристаллах (АСФ), а для защиты органов вдыхания – блок фильтрации и подачи воздуха. Важно отметить, что именно комплексный характер изделия в совокупности с правильно подобранной специальной защитной одеждой, устойчивой к излучению дуги, огнестойкой и прочной, а также с перчатками или рукавицами, обладающими необходимыми защитными свойствами, позволяет гарантировать полную защиту электросварщика от описанных выше опасных и вредных производственных факторов. 

Основным элементом комплексного средства защиты является автоматический светофильтр (АСФ). В выключенном состоянии светофильтр имеет степень затемнения 5 – 6 дин, при включении светофильтр осветляется до 3 дин, что позволяет, не поднимая щитка, визуально контролировать подготовительные и сборочные операции, выполняемые сварщиком. Когда деталь подготовлена, сварщик подносит электрод к месту будущего сварного шва и возбуждает дугу. Именно этот момент наиболее опасен для возникновения электроофтальмии. Применение щитка с автоматическим светофильтром исключает поражение глаз, поскольку наблюдение ведется через светофильтр еще до начала сварки. Как только возникла дуга, светофильтр мгновенно затемняется до необходимого уровня 9 – 13 дин. На это уходит ничтожное время – десятые доли миллисекунды. Заканчивается сварка – светофильтр осветляется, и сварщик, не поднимая щитка, снова может выполнять подготовительные операции.
 
В зависимости от назначения используются светофильтры различных моделей – от упрощенной до универсальных. 
    
9000Xi – универсальный сварочный щиток с автоматически затемняющимся светофильтром, работающим в двух режимах. Первый режим обеспечивает 5 степеней затемнения, которые применяются при MIG, MAG и сварке электродом, плазменной сварке и резке. Второй режим обеспечивает 3 степени затемнения при низкоамперной сварке вольфрамовым электродом (TIG). Новый улучшенный светофильтр обеспечивает работу даже при силе тока в 1 А. Speedglas 9000 Xi может использоваться при любом освещении, включая прямой солнечный свет. На щитке расположена солнечная батарея, которая продлевает срок службы батареек до 3000 часов.
    
Speedglas 9000X – универсальный сварочный щиток с автоматически затемняющимся светофильтром, с регулируемым от 9 до 13 DIN номером затемнения и увеличенным полем зрения на 45%. Используется с различным сварочным оборудованием при токах до 500 А. Имеет два способа регулировки чувствительности светофильтра: автоматический (рекомендуется для наружных работ) и ручной (для низкоамперной сварки). Щиток дополнительно оснащен солнечной батареей.
    
Speedglas 9000V – сварочный щиток с автоматически затемняющимся светофильтром, с регулируемым от 9 до 13 DIN номером затемнения. Используется с различным сварочным оборудованием и при различных сварочных работах. Имеет два способа регулировки чувствительности светофильтра: автоматический (рекомендуется для наружных работ) и ручной (для низкоамперной сварки). Универсальный щиток широкого промышленного назначения. 
    
Speedglas 9000XF – модель с фиксированным номером светофильтра 10, 11 или 12 DIN, но с увеличенным размером светофильтра 55х107 мм. Предусмотрена как автоматическая, так и ручная регулировка чувствительности светофильтра. 

Speedglas 9000F – сварочный щиток с автоматически затемняющимся светофильтром. Выпускаются три модели с фиксированными номерами затемнения – 10, 11, или 12 DIN. Модель общепромышленного назначения. Оптимальная модель для использования на конкретном сварочном посту, при известном оборудовании и постоянных сварочных токах.
    
Speedglas Utility – сварочный щиток с автоматически затемняющимся светофильтром. Выпускаются две модели с фиксированными номерами затемнения 10 или 11 DIN. Упрощенная модель, предназначенная для эпизодических сварочных работ в быту, мастерских, гаражах и т.д. 

Модели 9000XF, 9000V, 9000X и 9000Xi, помимо автоматического режима срабатывания от пульсации сварочной дуги, имеют и ручную регулировку порога срабатывания от изменения светового потока для случая стабильной дуги. В ручном режиме предусмотрена также дополнительная защита от яркого послесвечения сварочного шва. Светофильтр высветляется с запаздыванием – «ждет» пока сварочный шов остынет и утратит яркость свечения. 
    Наличие предвключенного интерференционного светофильтра постоянной оптической плотности обеспечивает надежную защиту глаз сварщика от ультрафиолетового и инфракрасного излучения даже при выключенном или вышедшем из строя автоматическом светофильтре.
Указанные четыре модели универсальны. Они пригодны не только для различных технологий электродуговой и плазменной сварки и резки при любых токах, но, в частном случае, могут использоваться для газовой сварки или резки автогенной горелкой и для шлифовально-зачистных работ. 
    
Модульная система установки светофильтра в щиток позволила привнести и другие усовершенствования, а также «маленькие хитрости». Так, с наружной стороны светофильтр защищен выпуклой поликарбанатной пластиной, на которую не налипают брызги металла. Оригинальная форма защитной пластины, на которую не налипают брызги металла. Оригинальная форма защитной пластины также выбрана не случайно. Помимо отличных оптических свойств она исключает применение нефирменных, суррогатных стекол, низкое качество которых может привести к повреждению светофильтра, и снизить эффективность его работы. С внутренней стороны светофильтр также защищен поликарбонатной пластиной. В случае необходимости в кассету светофильтра могут вставляться дополнительные простые светофильтры 1 или 2 DIN, если при очень больших токах (500 – 600 А) потребуется более плотное затемнение. А если у сварщика плохо со зрением? Носить очки под сварочным щитком неудобно. Поэтому здесь же могут устанавливаться и корректирующие линзы на +1,0; +1,5; +2,0; +2,5 диоптрий. 
    
То, что панель управления светофильтром находится внутри щитка – еще одно преимущество. Выведение регуляторов на внешнюю сторону щитка, как это сделано у некоторых изготовителей, чревато их поломкой или случайным непреднамеренным переключением в ходе работы. 
  
Следует особо отметить уникальную конструкцию самого щитка, не имеющего аналогов в мире. Помимо малого веса и хорошей балансировки на оголовье, регулируемом в широких пределах, щиток обладает зауженным профилем, что делает его применение особенно удобным при работе в стесненных местах. Съемная фронтальная рамка серебристого цвета (кроме модели Utility) отражает лучистое тепло и предотвращает перегрев щитка. Материал щитка и рамки из полиамида гибок и ударопрочен, не прожигается искрами и брызгами расплавленного металла, даже при сварке горизонтальных швов. 
    
Сварочные щитки Speedglas 9000 единственные в мире имеют боковые смотровые окошки из обычного светофильтра, защищающие сварщика от бликов соседних сварочных постов и расширяющие обзор более, чем на 180 градусов. Тем самым улучшается ориентировка сварщика в пространстве и снижается риск травмирования окружающими препятствиями и движущимися объектами.
 
При использовании сварочных щитков с автоматическим затемнением может возникнуть еще одна проблема: так как сварщик долгое время может работать, не поднимая маски, под ней начинает скапливаться содержащийся в выдыхаемом воздухе углекислый газ. В сварочном щитке Speedglas 9000 предусмотрена уникальная система отвода углекислоты из-под щитка через специальные каналы без использования какого-либо побудителя – только за счет геометрии самих каналов (кроме модели Utility).
    
Сварочные щитки Speedglas 9000 могут использоваться в комплекте с защитной каской, а при необходимости и с наушниками. За счет оригинальной шарнирной системы щиток может откидываться и фиксироваться в поднятом положении снаружи каски в ее теменной области. 
    
Новейшая разработка фирмы Hornell Int. AB – система Speedglas FlexFView – представляет собой комбинацию сварочного щитка с прозрачным щитком для зачистных и шлифовальных работ. Таким образом, в одном пакете предлагается универсальное средство защиты для проведения сварочных и вспомогательных работ, обеспечивающее надежную защиту и высокий комфорт. 
    
Защита органов дыхания от сварочного аэрозоля осуществляется следующим образом. Щиток снабжен матерчатыми шторками из огнестойкого материала, которые охватывают шею и нижнюю часть лица сварщика, изолируя органы дыхания. Сверху к щитку крепится воздуховод, по которому подается очищенный блоком фильтрации воздух. Этот воздух, во-первых, служит для дыхания сварщика, во-вторых, омывает его лицо, создавая ощущение свежести и предохраняя от перегрева вследствие воздействия инфракрасных лучей, в-третьих, создает некоторое избыточное давление, препятствующее проникновению под щиток вредных веществ. Блок фильтрации сварщик размещает на боку или спине. Это способствует тому, что воздух для дыхания забирается из места более удаленного от источника образования вредных веществ, где их концентрация не так велика.

Входящий в комплексное средство автономный блок фильтрации Adflo – турбоблок комбинированной противоаэрозольной и противогазовой защиты, отличающийся повышенной сорбционной емкостью по аэрозолям и газам. В зависимости от характера загрязнения воздуха он может производить как очистку только от аэрозоля, так и от аэрозольно-газовой смеси. Установка дополнительного противогазового фильтра занимает считанные секунды. В собранном виде блок Adflo компактен, не имеет острых углов и граней, удобно размещается на поясе. Уникальность системы Adflo заключается также в электронном блоке управления потоком воздуха, который автоматически поддерживает необходимый расход (160 или 200 л/мин) и своевременно дает сигнал тревоги в случае забивания фильтра или разряда аккумулятора. 
    
Для работы в замкнутых объемах предлагается система Fresh-air С, подающая под щиток сварщика чистый сжатый воздух от баллона, магистрали или компрессора. Cварочный щиток Speedglas Fresh-air отличаются уникальной системой воздухораспределения. Воздух подводится одновременно по нескольким каналам, что исключает узконаправленный обдув лица, характерный для продукции больщинства других производителей и чреватый повышенным риском респираторных заболеваний.
         
Большим преимуществом системы Speedglas для российских потребителей является ее совместимость с отечественным автономным блоком фильтрации воздуха Муссон. Турбоблок Муссон не уступает по своим техническим характеристикам аналогичным западным противоаэрозольным СИЗОД, надежно защищает сварщика от сварочных аэрозолей и механических частиц. 
    
Грамотный подбор и применение комплексных средств индивидуальной защиты позволит свести к минимуму риск профессиональных заболеваний. Сохранить здоровье сварщика.

 

Абрамцов А.Г., 
генеральный директор ООО «НПП СИЗОД» 
 
Источник: журнал «Промышленное Оборудование», № 2, 2004 г.; электронный ресурс – kisar.ru.